viernes, 26 de junio de 2015

Formato de un datagrama IP

Datagrama IP

  • Longitud total (16 bits). Indica la longitud total del datagrama expresada en bytes. Como el campo tiene 16 bits, la máxima longitud posible de un datagrama será de 65535 bytes.
  • Identificación (16 bits). Número de secuencia que junto a la dirección origen, dirección destino y el protocolo utilizado identifica de manera única un datagrama en toda la red. Si se trata de un datagrama fragmentado, llevará la misma identificación que el resto de fragmentos.
  • Banderas o indicadores (3 bits). Sólo 2 bits de los 3 bits disponibles están actualmente utilizados. El bit de Más fragmentos (MF) indica que no es el último datagrama. Y el bit de No fragmentar(NF) prohíbe la fragmentación del datagrama. Si este bit está activado y en una determinada red se requiere fragmentar el datagrama, éste no se podrá transmitir y se descartará.
  • Desplazamiento de fragmentación (13 bits). Indica el lugar en el cual se insertará el fragmento actual dentro del datagrama completo, medido en unidades de 64 bits. Por esta razón los campos de datos de todos los fragmentos menos el último tienen una longitud múltiplo de 64 bits. Si el paquete no está fragmentado, este campo tiene el valor de cero.
  • Tiempo de vida o TTL (8 bits). Número máximo de segundos que puede estar un datagrama en la red de redes. Cada vez que el datagrama atraviesa un router se resta 1 a este número. Cuando llegue a cero, el datagrama se descarta  y se devuelve un mensaje ICMP de tipo "tiempo excedido" para informar al origen de la incidencia.
  • Protocolo (8 bits). Indica el protocolo utilizado en el campo de datos: 1 para ICMP, 2 
  • cuando envio a un paquete a destino sale a un destino multiplo de 8 cada pauete tiene un tiempo de vida. cada ruter que atraviesa se le va restando uno, 
  • el ruter genera un paquete nuevo le mana un sms y marca que el tiempo de vida espoiro para IGMP, 6 para TCP y 17 para UDP.

  • cuando envio a un paquete a destino sale a un destino multiplo de 8 cada paquete tiene un tiempo de vida. cada ruter que atraviesa se le va restando uno, 
  • el ruter genera un paquete nuevo le mana un sms y marca que el tiempo de vida espoiro
  • CRC cabecera (16 bits). Contiene la suma de comprobación de errores sólo para la cabecera del datagrama. La verificación de errores de los datos corresponde a las capas superiores.
  • Dirección origen (32 bits). Contiene la dirección IP del origen.
  • Dirección destino (32 bits). Contiene la dirección IP del destino.
Ya hemos visto que las tramas físicas tienen un campo de datos y que es aquí donde se transportan los datagramas IP. Sin embargo, este campo de datos no puede tener una longitud indefinida debido a que está limitado por el diseño de la red. El MTU de una red es la mayor cantidad de datos que puede transportar su trama física. El MTU de las redes Ethernet es 1500 bytes y el de las redes Token-Ring, 8192 bytes. Esto significa que una red Ethernet nunca podrá transportar un datagrama de más de 1500 bytes sin fragmentarlo.
Un encaminador (router) fragmenta un datagrama en varios si el siguiente tramo de la red por el que tiene que viajar el datagrama tiene un MTU inferior a la longitud del datagrama. Veamos con el siguiente ejemplo cómo se produce la fragmentación de un datagrama.
 

Supongamos que el host A envía un datagrama de 1400 bytes de datos (1420 bytes en total) al host B. El datagrama no tiene ningún problema en atravesar la red 1 ya que 1420 < 1500. Sin embargo, no es capaz de atravesar la red 2 (1420 >= 620). El router R1 fragmenta el datagrama en el menor número de fragmentos posibles que sean capaces de atravesar la red 2. Cada uno de estos fragmentos es un nuevo datagrama con la misma Identificación pero distinta información en el campo de Desplazamiento de fragmentación y el bit de Más fragmentos (MF). Veamos el resultado de la fragmentación:
Fragmento 1: Long. total = 620 bytes; Desp = 0; MF=1 (contiene los primeros 600 bytes de los datos del datagrama original)
Fragmento 2: Long. total = 620 bytes; Desp = 600; MF=1 (contiene los siguientes 600 bytes de los datos del datagrama original)
Fragmento 3: Long. total = 220 bytes; Desp = 1200; MF=0 (contiene los últimos 200 bytes de los datos del datagrama original)
El router R2 recibirá los 3 datagramas IP (fragmentos) y los enviará a la red 3 sin reensamblarlos. Cuando el host B reciba los fragmentos, recompondrá el datagrama original. Los encaminadores intermedios no reensamblan los fragmentos debido a que esto supondría una carga de trabajo adicional, a parte de memorias temporales. Nótese que el ordenador destino puede recibir los fragmentos cambiados de orden pero esto no supondrá ningún problema para el reensamblado del datagrama original puesto que cada fragmento guarda suficiente información.
Si el datagrama del ejemplo hubiera tenido su bit No fragmentar (NF) a 1, no hubiera conseguido atravesar el router R1 y, por tanto, no tendría forma de llegar hasta el host B. El encaminador R1 descartaría el datagrama.


martes, 23 de junio de 2015

Mascara de subred


  1. La máscara de red o redes es una combinación de bits que sirve para delimitar el ámbito de una red de ordenadores. Su función es indicar a los dispositivos qué parte de la dirección IP es el número de la red, incluyendo la subred, y qué parte es la correspondiente al host.
  2. IP es un protocolo de comunicación de datos digitales clasificado funcionalmente en la Capa de Red según el modelo internacional OSISu función principal es el uso bidireccional en origen o destino de comunicación para transmitir datos mediante un protocolo no orientado a conexión que transfiere paquetes conmutados a través de distintas redes físicas previamente enlazadas según la norma OSI de enlace de datos.                        
  3. Se dice que no esta orientado a conexión porque solo intenta llegar a destino. No garantiza que valla a llegar bien la información.
  4. Porque no garantiza si el paquete enviado llega bien a destino, El protocolo IP intenta que cada paquete llege a destino.

viernes, 19 de junio de 2015

Direcciones especiales y reservadas

Direcciones IP especiales y reservadas                                             

No todas las direcciones comprendidas entre la 0.0.0.0 y la 223.255.255.255 son válidas para un host: algunas de ellas tienen significados especiales. Las principales direcciones especiales se resumen en la siguiente tabla. Su interpretación depende del host desde el que se utilicen.
 
Bits de redBits de hostSignificadoEjemplo
todos 0Mi propio host0.0.0.0
todos 0
host
Host indicado dentro de mi red0.0.0.10
redtodos 0Red indicada192.168.1.0
todos 1Difusión a mi red255.255.255.255
redtodos 1Difusión a la red indicada192.168.1.255
127cualquier valor válido de hostLoopback (mi propio host)127.0.0.1

Difusión o broadcasting es el envío de un mensaje a todos los ordenadores que se encuentran en una red. La dirección de loopback (normalmente 127.0.0.1) se utiliza para comprobar que los protocolos TCP/IP están correctamente instalados en nuestro propio ordenador. Lo veremos más adelante, al estudiar el comando PING.
Las direcciones de redes siguientes se encuentran reservadas para su uso en redes privadas (intranets). Una dirección IP que pertenezca a una de estas redes se dice que es una dirección IP privada.
 
ClaseRango de direcciones
reservadas de redes
A10.0.0.0
B172.16.0.0 - 172.31.0.0
C192.168.0.0 - 192.168.255.0

viernes, 12 de junio de 2015

Direcciones IP

Privadas

La asignación de una dirección pública a cada ordenador que requiere acceso a la red supone una demanda de direcciones demasiado alta como para ser gestionada de forma eficiente. Por ello se contempla dentro del diseño de la red máquinas que no requieren una conexión directa a Internet. Estas máquinas sin conexión directa típicamente hacen uso de puertas de enlaces y servidores proxy para acceder a los servicios que requieren de Internet. Por tanto es posible diseñar en estos casos una estructura de red que haga uso de direcciones IP públicas para los enrutadores, proxies, firewalls, puertas de enlace, NAT, etc.)
  • Para los equipos conectados a la red que no requieren conexión directa existe un rango de direcciones IP conocida como el espacio de direcciones privado. Este espacio de direcciones no es asignado a ninguna organización en particular de forma pública, pudiendo emplearse sin conflictos en la configuración de redes privadas. La principal ventaja de este esquema es permitir la reutilización de los rangos de direcciones privadas en distintas organizaciones sin agotar el espacio público de direcciones rápidamente. Nótese que estas direcciones no pueden ser contactadas desde el espacio de direcciones público de forma directa puesto que no disponen de rutas asignadas en la infraestructura de routers de Internet (pudiendo hacerse de forma indirecta a través de distintas capas de red y sistemas de traducción de direcciones (NAT)).
    Existen tres bloques principales de direcciones IP privadas definidas en el RFC 1918.
    • 10.0.0.0 (prefijo 10/8): los rangos válidos para este bloque serían 10.0.0.0 hasta 10.255.255.255. Siendo un identificador de red de clase A que permite hacer uso de hasta 24 bits de dirección.
    • 172.16.0.0 (prefijo 172.16/12): los rangos válidos para este bloque serían 172.16.0.0 hasta 172.31.255.255. Formado por 16 bloques de clase B que permite hacer uso de hasta 20 bits de dirección.
    • 192.168.0.0 (prefijo192.168/16): los rangos válidos para este bloque serían 192.168.0.0 hasta 192.168.255.255. Formado por 256 bloques de clase C que permite hacer uso de hasta 16 bits de dirección.


Dinámicas

Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.
DHCP apareció como protocolo estándar en octubre de 1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997). DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro.
Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. El servidor del servicio DHCP puede ser configurado para que renueve las direcciones asignadas cada tiempo determinado.

Ventajas

  • Reduce los costos de operación a los proveedores de servicios de Internet (ISP).
  • Reduce la cantidad de IP asignadas (de forma fija) inactivas.
  • El usuario puede reiniciar el router para que le sea asignada otra IP y así evitar las restricciones que muchas webs ponen a sus servicios gratuitos de descarga o visionado multimedia online.

Desventajas

  • Obliga a depender de servicios que redirigen un host a una IP.


Públicas

Estas direcciones son asignadas por InterNIC, asegurando que no existan direcciones iguales asignadas a distintas máquinas. Se asignan haciendo uso de identificadores de red de clases o bloques CIDR. Mediante este sistema se asegura que se puedan programar rutas a través de Internet para comunicar los distintos equipos conectados a la red.
Tras una asignación de bloques IP a una organización, esta asignación queda registrada en los routers que forman parte de Internet mediante los parámetros de identificador de red y mascara de subred que definen las rutas en la red.
En el caso de usar direcciones ya asignadas a otra organización en una red que forma parte de Internet, los paquetes no serán entregados correctamente a las direcciones ilegales creadas en la red. Esto es debido a que ya existen rutas hacia los routers de la organización que tienen asignadas dichas direcciones, evitando la entrega a las nuevas direcciones duplicadas.
Estática

Una dirección IP estática es una dirección regular que está asignada permanentemente a una computadora localizable a través de Internet. Cada computadora conectada a una red tiene una dirección física permanente llamada dirección MAC. Esto no se puede cambiar sin tener que reemplazar el adaptador de red del equipo. La dirección IP, aunque asignada permanentemente, no se da automáticamente a una computadora. Puede ser abandonada y luego reasignada a otro equipo